

WELCOME TO AUTO-ISAC! MONTHLY VIRTUAL COMMUNITY CALL

June 1, 2022 This Session will be recorded.

TLP:WHITE

DHS TRAFFIC LIGHT PROTOCOL (TLP) CHART

COLOR	WHEN SHOULD IT BE USED?	HOW MAY IT BE SHARED?
TLP:RED Not for disclosure, restricted to participants only.	Sources may use TLP:RED when information cannot be effectively acted upon by additional parties, and could lead to impacts on a party's privacy, reputation, or operations if misused.	Recipients may not share TLP:RED information with any parties outside of the specific exchange, meeting, or conversation in which it was originally disclosed. In the context of a meeting, for example, TLP:RED information is limited to those present at the meeting. In most circumstances, TLP:RED should be exchanged verbally or in person.
TLP:AMBER Imited disclosure, restricted to participants organizations.	Sources may use TLP:AMBER when information requires support to be effectively acted upon, yet carries risks to privacy, reputation, or operations if shared outside of the organizations involved.	Recipients may only share TLP:AMBER information with members of their own organization, and with clients or customers who need to know the information to protect themselves or prevent further harm. Sources are at liberty to specify additional intended limits of the sharing; these must be adhered to.
TLP:GREEN Imited disclosure, restricted to the community.	Sources may use TLP:GREEN when information is useful for the awareness of all participating organizations as well as with peers within the broader community or sector.	Recipients may share TLP:GREEN information with peers and partner organizations within their sector or community, but not via publicly accessible channels. Information in this category can be circulated widely within a particular community. TLP:GREEN information may not be released outside of the community.
TLP:WHITE Disclosure is not limited.	Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release.	Subject to standard copyright rules, TLP:WHITE information may be distributed without restriction.

From: https://www.us-cert.gov/tlp

Agenda

Тіте (ет)	Торіс		
11:00	 Welcome ➢ Why We're Here ➢ Expectations for This Community 		
11:05	 Auto-ISAC Update ➢ Auto-ISAC Activities ➢ Heard Around the Community ➢ What's Trending 		
11:15	DHS CISA Community Update		
11:20	Featured Speaker: François-Frédéric Ozog, Director, Business Development, Linaro 		
11:45	Around the Room ➤ Sharing Around the Virtual Room		
11:55	Closing Remarks		

WELCOME - AUTO-ISAC COMMUNITY CALL!

Purpose: These monthly Auto-ISAC Community Meetings are an opportunity for you, our Members & connected vehicle ecosystem Partners, to:

- ✓ Stay informed of Auto-ISAC activities
- ✓ Share information on key vehicle cybersecurity topics
- Learn about exciting initiatives within the automotive community from our featured speakers

Participants: Auto-ISAC Members, Potential Members, Strategic Partners, Academia, Industry Stakeholders and Government – *the whole of the automotive industry*

<u>Classification Level</u>: TLP:GREEN - May be shared within the Auto-ISAC Community and "off the record"

<u>How to Connect</u>: For further info, questions or to add other POCs to the invite, please contact us! (sharmilakhadka@automotiveisac.com)

ENGAGING IN THE AUTO-ISAC COMMUNITY

* <u>Join</u>

22

OEM Members

- ✤ If your organization is eligible, apply for Auto-ISAC Membership
- ✤ If you aren't eligible for Membership, connect with us as a Partner
- Get engaged "Cybersecurity is everyone's responsibility!"

* Participate

- Participate in monthly virtual conference calls (1st Wednesday of month)
- If you have a topic of interest, let us know!
- Engage & ask questions!

21 *Navigator Partners*

43 Supplier & Commercial Vehicle Members

Share – "If you see something, say something!"

- Submit threat intelligence or other relevant information
- Send us information on potential vulnerabilities
- Contribute incident reports and lessons learned
- Provide best practices around mitigation techniques

Membership represents 99% of cars and trucks on the road in North America Coordination with **26** critical infrastructure ISACs through the National Council of ISACs (NCI)

13

Innovator

Partners

5

2022 - 2023 BOARD OF DIRECTORS EXECUTIVE COMMITTEE (EXCOM)

Josh Davis Chair of the Board of the Directors Toyota

Kevin Tierney Vice Chair of the Board of the Directors GM

Jenny Gilger Secretary of the Board of the Directors Honda

Tim Geiger Treasurer of the Board of the Directors Ford

Allen Houck Chair of the SAG NXP

Todd Lawless Chair of the Advisory Board Continental

Larry Hilkene Chair of the CAG Cummins

2022-2023 Advisory Board (AB) Leadership

Todd Lawless Chair of the Advisory Board Continental Bob Kaster Vice Chair of the

Vice Chair of the Advisory Board Bosch

2 June 2022

Member Roster

Highlight = Change 68 Members

68 Members, 2 in Progress

As of June 1, 2022

Aisin	Honda	Nissan	Yamaha Motors
Allison Transmission	Hyundai	Nuro	ZF
Aptiv	Infineon	NXP	
Argo Al, LLC	Intel	Oshkosh Corp	
AT&T	John Deere Electronic	PACCAR	
AVL List GmbH	Kia	Panasonic	
Blackberry Limited	Knorr Bremse	Polaris	
BMW Group	Lear	Qualcomm	
BorgWarner	LGE	Renesas Electronics	
Bosch (Escrypt-Affiliate)	Lucid Motors	Stellantis	
Canoo	Luminar	Subaru	
Continental (Argus-Affiliate)	Magna	Sumitomo Electric	
Cummins	MARELLI	Tokai Rika	
Denso	Mazda	Toyota	
EFS	Mercedes-Benz	TuSimple	
Faurecia	Meritor	Valeo	
Ford	Mitsubishi Motors	Veoneer	
Garrett	Mitsubishi Electric	Vitesco	
General Motors (Cruise-Affiliate)	Mobis	Volkswagen	
Geotab	Motional	Volvo Cars	
Harman	Navistar	Volvo Group	
Hitachi	Nexteer Automotive Corp	Waymo	

UPCOMING EVENTS

- Upcoming Meetings
 - > Q2 European Workshop:
 - Wednesday, June 22 Theme: Streamlining Information Sharing Time: 1-5 pm CET (7-11 am ET) <u>Register here.</u> TLP:AMBER
 - IT/OTWG Quarterly Workshop (Virtual) Thursday June 30 Time: 9 a.m. 12 p.m. TLP:AMBER
 - > Members Teaching Members:
 - Wednesday, July 20 Speaker: Larry Hilkene, Cummins et al. Title: TBD (J1939 Topic) Time: 10 11:30 a.m. TLP:AMBER
- Announcements
 - Auto-ISAC Cybersecurity Summit Registration is Open! Both in-person and virtual venue. Dates: September 7-8, 2022 in Dearborn, MI at The Henry Hotel. Your Company PoC has the "free passes" please check with them!
 - TLP:GREEN version of the Annual Report has been approved and was released May 4.

2022 AUTO-ISAC CYBERSECURITY SUMMIT DRIVING A SECURE FUTURE

Hybrid Event • Dearborn, MI and Virtual • September 7-8, 2022

More information here

EVENT HOST & TITANIUM SPONSOR

AUTO-ISAC INTELLIGENCE

TLP:WHITE

AUTO-ISAC INTELLIGENCE

- Know what we track daily: <u>subscribe</u> to the DRIVEN; know our strategic view of the cyber threat environment: read the TLP:GREEN Threat Assessment in our 2021 Annual Report
 - Send feedback, contributions, or questions to <u>analyst@automotiveisac.com</u>
- > Intelligence Notes
 - We continue to advise the automotive community to maintain heightened vigilance for indications of malicious activity or compromise within their business networks and industrial systems. We expect the Russia threat to persist after hostilities end (<u>CISA-Known Exploited Vulnerabilities</u> <u>Catalog</u>, <u>CISA Shields Up</u>, <u>CISA-Technical Approaches to Uncovering and Remediating Malicious</u> <u>Activity</u>).
 - We continue to see threat actors targeting automotive companies' business networks with ransomware (including <u>Hive</u>, <u>Lockbit 2.0</u>, <u>Black Basta</u>, <u>Vice Society</u>) and other cyberattacks. Impacts include theft of sensitive proprietary information and customer data, and disruption of business operations.
 - Other than vehicle theft, we are not seeing malicious cyberattacks on vehicles. We continue to consume and internally discuss the latest vehicle cybersecurity research.
 - Notable Tactics Techniques and Procedures: Credential Stuffing (MITRE); Zero-Click (SecurityWeek); Exploitation of Vulnerabilities in Enterprise Resource Planning Solution (Cybereason); Spoofing Software-as-a-Service Vanity Uniform Resource Locators (Varonis); Exploitation of Known vs. zero-day Vulnerabilities (ThreatPost).

CISA RESOURCE HIGHLIGHTS

TLP: WHITE – Corporate Security Symposium (CSS)

- Events coordinated between DHS Intelligence & Analysis (I&A) Private Sector Engagement, Domestic Security Alliance Council, state and local governments, and private sector partners
- Provides a forum for public and private sector partners to discuss current and emerging security threats relevant to their regions
- Provides opportunities to forge new relationships and strengthen existing relationships
- See <u>https://www[.]dhs [.] gov/private-sector-engagement</u>, <u>https://www [.]</u> <u>dhs [.] gov/publication/css-one-pager</u>, and <u>https://www [.] dsac [.] gov</u>
- Contact email for more information at <u>l&APrivateSector@hq.dhs.gov</u>

TLP: WHITE – CISA Current Activities – Joint Products

- 5G Security Evaluation Process Investigation Study CISA, DoD
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/26/cisa-and-dodrelease-5g-security-evaluation-process-investigation
 - https://www[.]cisa[.]gov/blog/2022/05/26/cisa-dhs-st-dod-introduce-resultsassessment-5g-security-evaluation-process
- Weak Security Controls and Practices Routinely Exploited for Initial Access Cybersecurity authorities of US, Canada, New Zealand, Netherlands, UK
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/17/weak-securitycontrols-and-practices-routinely-exploited-initial
 - https://www[.]cisa[.]gov/uscert/ncas/alerts/aa22-137a

TLP: WHITE – CISA Current Activities – Joint Products - continued

- Advisory on Protecting MSPs and their Customers Cybersecurity authorities of US, UK, Australia, New Zealand
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/11/cisa-joins-partnersrelease-advisory-protecting-msps-and-their
 - https://www[.]cisa[.]gov/uscert/ncas/alerts/aa22-131a
- U.S. Government Attributes Cyberattacks on SATCOM Networks to Russian State-Sponsored Malicious Cyber Actors – CISA, FBI
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/10/us-governmentattributes-cyberattacks-satcom-networks-russian
 - https://www[.]cisa[.]gov/uscert/ncas/alerts/aa22-076a

TLP: WHITE – CISA Current Activities

- CISA Issues Emergency Directive and Releases Advisory Related to VMware Vulnerabilities
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/18/cisa-issuesemergency-directive-and-releases-advisory-related
 - https://www[.]cisa[.]gov/emergency-directive-22-03
 - http://www[.]cisa[.]gov/uscert/ncas/alerts/aa22-138b
- CISA Releases Analysis of FY21 Risk and Vulnerability Assessments
 - https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/19/cisa-releasesanalysis-fy21-risk-and-vulnerability-assessments
 - https://www[.]cisa[.]gov/cyber-assessments

TLP: WHITE – Eighty-four (84) Known Exploited Vulnerabilities (KEV) added to the catalog in April 2022:

- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/25/cisa-adds-34-known-exploitedvulnerabilities-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/24/cisa-adds-20-known-exploitedvulnerabilities-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/23/cisa-adds-21-known-exploitedvulnerabilities-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/16/cisa-adds-two-known-exploitedvulnerability-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/11/cisa-adds-one-known-exploitedvulnerabilities-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/10/cisa-adds-one-known-exploitedvulnerabilities-catalog
- https://www[.]cisa[.]gov/uscert/ncas/current-activity/2022/05/04/cisa-adds-five-known-exploitedvulnerabilities-catalog
- KEV Catalog:
 - https://www[.]cisa[.]gov/known-exploited-vulnerabilities-catalog

TLP: WHITE – Additional Resources From CISA

- CISA Homepage <u>https://www[.]cisa[.]gov/</u>
- CISA NCAS <u>https://us-cert[.]cisa[.]gov/</u>
- CISA Shields Up <u>https://www[.]cisa[.]gov/shields-up</u>
- Free Cybersecurity Services and Tools <u>https://www[.]cisa[.]gov/free-cybersecurity-services-and-tools</u>
- CISA News Room <u>https://www[.]cisa[.]gov/cisa/newsroom</u>
- CISA Blog <u>https://www[.]cisa[.]gov/blog-list</u>
- CISA Publications Library <u>https://www[.]cisa[.]gov/publications-library</u>
- CISA Cyber Resource Hub <u>https://www[.]cisa[.]gov/cyber-resource-hub</u>
- CISA Cybersecurity Directives <u>https://cyber[.]dhs[.]gov/directives/</u>

For more information: cisa.gov

Questions? Central@cisa.dhs.gov 1-888-282-0870

AUTO-ISAC COMMUNITY MEETING

Why Do We Feature Speakers?

- * These calls are an opportunity for information exchange & learning
- ✤ Goal is to educate & provide awareness around cybersecurity for the connected vehicle

What Does it Mean to Be Featured?

- Perspectives across our ecosystem are shared from Members, government, academia, researchers, industry, associations and others.
- Goal is to showcase a rich & balanced variety of topics and viewpoints
- Featured speakers are not endorsed by Auto-ISAC nor do the speakers speak on behalf of Auto-ISAC date

How Can I Be Featured?

If you have a topic of interest you would like to share with the broader Auto-ISAC Community, then we encourage you to contact us!

7 Best Practice Guides available on website

2000+ *Community Participants*

30+ *Featured Speakers to date*

FEATURED SPEAKER

TLP:WHITE

FRANÇOIS-FRÉDÉRIC OZOG, LINARO DIRECTOR OF BUSINESS DEVELOPMENT

François-Frédéric is an entrepreneur with almost 40 years of experience in technical, sales and marketing positions. He is director of business development at Linaro which is a collaborative engineering organization working for its members such as Arm, Google, Qualcomm, Huawei.

In addition to his business role, François-Frédéric chairs Linaro industrial edge segment group and leads the automotive initiative. François-Frédéric holds a degree in computing science from Université de Paris VII.

He is the author of seven patents and was recognized by ETSI NFV for contributions in acceleration interfaces.

23

Cybersecurity

Made simpler for firmware, hypervisor and OS

VII01 01110101 01110010 0111001

en en 100101

110011 00100000 01110100 0110111

110111 01101000 01100

01100101 01110010 0110

01110101 01110010

10 01111001

1

Member companies Linaro collaborates with

In My Humble Opinion

The Good

ISO 21434 UN-R155, UN-R156 / ISO 24089

Not an afterthought Builders/Breakers

Auto-ISAC

The Bad

Richer authorization schemes missing (key duplicates, P2P, insurance...)

Standardized dependable cybersecurity

Virtualization and Confidential Computing

The ugly

Do you know your hardware and firmware?

Arm new standards

011010000 01101111 01100110 01100110 010110010 01101110010 01101110 01100100 01101010 01100011 01100101 01100100 00100000 01100101 0110001 00100000 01110100 01100100 011000000 01100101 0110000 01100101 011000000 01100101 0110000 011000101 011000000 01100101 01110010 011000001 01110000000

TOOLLED DILLING

.01110 01101101

01110110 01100101 01110010 01101000 011000 01100100 00100000 01101111 01101101 00100000 01110100 01101111 0010

11 01101110 01100000 01110111 01101000 101111 01101110 01100100 01110101 01100011 011 11 01101110 00100000 01110100 01101000

0 01100101 01100100 00100000 01100101 0110 100000 01110100 01101111 00100000 0110010 100010 01110010 0110010 0110111 01

01110111 01101000 01100101 01110010 01400 101101 01100001 01101110 01111001 00100000

01110010 01110011 00100000 Linaro

SystemReady flavors / generalized UEFI interface

SystemReady-IR

- U-Boot and device tree (DT) based
 - UEFI interface implementation (SecureBoot, MeasuredBoot...)
 - Backward and forward compatibility through certification of DT
 - Firmware provided authenticated DT preferred method
- System Device Tree work in progress

SystemReady-ES

- Embedded servers, EDK2 and ACPI based
 - Currently more targeted at telecom edge
 - Safety hurdles: EDK2 cyclomatic complexity > 10 times U-Boot, ACPI byte code engine

SystemReady-LS

LinuxBoot + minimal UEFI (possibly ACPI or DT, probably DT for embedded)

SystemReady-SR

• Severs, EDK2 and ACPI based

Standardized firmware update: capsules

Arm PSA certified

os

Firmware

TOULINO OF TANK

.00000 01101111 01100110 0110011 101 00100000 01110100 0110111 00

UI_101110_01100100_01110101_01100011

01100101 01100100 00100000 01100101 0110 00100000 01110100 01101111 00100000

01100101 01110010 01100001 01110100 0110

01110110 01100101 01110010 01101000 011001

01101101 00100000 01110100 01101111 001 110010 01110011 00100000 01110111 0110100 1111 01101110 01100100 01110101 01100011 011

11 01101110 00100000 01110100 01101000

01100101 01100100 00100000 01100101 0110 CEO 01110100 01101111 00100000 0110

01110111 01101000 01100101 01110010 01100 01101 01100001 01101110 01111001 00100000

1100 00100000 01101111 01100110 011001 ie

Linaro

11100110 01110010 01101111 0

01 01110010

.01110 01101101

01111001

1110 01101101

01110010 01110011 00100000

 $01100100\ 00100000\ 01101111$

)1

110 01111001 00100000

Regulations, standards & recommendations

NIST 800 series

UN-R155 Annex 5 - threat analysis done

4	4 High level and sub-level descriptions of vulnerability/ threat		Example of vulnerability or attack method		Ref	Mitigation	GAP	
62	 4.3.7 Potential vulnerabilities that could be exploited if not sufficiently protected or hardened 	26	Cryptographic technologies can be compromised or are insufficiently applied	26.1	Combination of short encryption keys and long period of validity enables attacker to break encryption	M23	Cybersecurity best practices for software and hardware development shall be followed	- security policy based on the best practice
63				26.2	Insufficient use of cryptographic algorithms to protect sensitive systems			
64				26.3	Using already or soon to be deprecated cryptographic algorithms			
65		27	Parts or supplies could be compromised to permit vehicles to be attacked	27.1	Hardware or software, engineered to enable an attack or fails to meet design criteria to stop an attack	M23	Cybersecurity best practices for software and hardware development shall be followed	- security fault tree analysis
66		28	Software or hardware development permits vulnerabilities	28.1	Software bugs. The presence of software bugs can be a basis for potential exploitable vulnerabilities. This is particularly true if software has not been tested to verify that known bad code/bugs is not present and reduce the risk of unknown bad code/bugs being present	M23	Cybersecurity best practices for software and hardware development shall be followed Cybersecurity testing with adequate coverage	- Security test automation? - LAVA Lab extension to support JTAG/debug ports ,etc.
67	,			28.2	Using remainders from development (e.g. debug ports, JTAG ports, microprocessors, development certificates, developer passwords,) can permit access to ECUs or permit attackers to gain higher privileges			
68		29	Network design introduces vulnerabilities	29.1	Superfluous internet ports left open, providing access to network systems			
69				29.2	Circumvent network separation to gain control. Specific example is the use of unprotected gateways, or access points (such as truck-trailer gateways), to circumvent protections and gain access to other network segments to perform malicious acts, such as sending arbitrary CAN bus messages	M23	Cybersecurity best practices for software and hardware development shall be followed. Cybersecurity best practices for system design and system integration shall be followed	Network segmentation/isolation
70	30	30	Physical loss of data loss	30.1	Damage caused by a third party. Sensitive data may be lost or compromised due to physical damages in cases of traffic accident or theft	M24	Best practices for the protection of data integrity and confidentiality shall be followed for storing personal data.	sentitive data must be cloned in cloud
71				30.2	Loss from DRM (digital right management) conflicts. User data may be deleted due to DRM issues		Example Security Controls can be found in ISO/SC27/WG5	DRM must not remove the data
72				30.3	The (integrity of) sensitive data may be lost due to IT components wear and tear, causing potential cascading issues (in case of key alteration, for example)			sentitive data must be cloned in cloud
73		31	Unintended transfer of data can occur	31.1	Information breach. Personal data may be leaked when the car changes user (e.g. is sold or is used as hire vehicle with new hirers)	M24	Best practices for the protection of data integrity and confidentiality shall be followed for storing personal data.	- Secure storage cleanup? - activation/decryption system for personal data
		32	Physical manipulation of systems can enable an attack	32.1	Manipulation of electronic hardware, e.g. unauthorized electronic hardware added to a vehicle to enable "man-in-the-middle" attack	M9	Measures to prevent and detect unauthorized access shall be employed	N/A (Hardware electrical anti-temper hardening is required.)

UN-R155 impact on firmware

Taxonomy of firmware

- xCU
 - Application processor boot, runtime and confidential compute services
 - Controllers (Arm System Control Processor, Intel Management Engine)
 - Devices (GPU, 5G modem...)
- Key FOB

Basics

- Secure Boot + Measured Boot + Full disk encryption
- Standard OTA with anti-bricking, anti-rollback protections

Less obvious

- Device Identifier Composition Engine (DICE)
- Fault injection resilience (Secure Boot evasion for instance)
- Detection of abnormal behavior
- Firmware re-encryption (*image attacks do not leak to all instances of the same model*)

UN-R156 impact on firmware

UN-R156 / 7.1.2.3

"For every RXSWIN, there shall be an <u>auditable register</u> describing all the software relevant to the RXSWIN of the vehicle type before and after an update. This shall include information of the software versions and their integrity validation data for all relevant software for each RXSWIN."

ISO24089 / 9.3.2.7

"The integrity and authenticity of the software update package shall be verified before activation in a recipient of the software update operation."

- Non repudiable audit trails (not just for OTA)
- Collect vehicle IDs (unique or not) interface (to prepare for OTA campaigns)
- Software IDs and versions across all aspects (accelerator firmware...)
- Transactional multi-xCU OTA

Additional firmware needs for automotive

Dependable boot (A/B and per OS vouching)

Boot time

Freedom of interference for safety workloads

System Control and Management Interface (SCMI) and virtualized SCMI

firmwareTPM (per tenant instances)

TEE support

- SoC generic: Crypto services, secure storage, attestation services
- 3rd Party: DRM, non repudiable logging
- TEE access with hypervisor, virtualized TEE

Confidential Compute support

- V8 in TrustZone, v9 in Realms and TrustZone (Open Enclave SDK)
- In-vehicle with cloud extensions multi-tenancy

Implementing SystemReady for automotive

Hypervisor

TOULING OFFICE

OTHER DESCRIPTION OF THE

00000 01101111 01100100 011001

01 01110010

.01110 01101101

01111001

1110 01101101

01110010 01110011 00100000

 $01100100\ 00100000\ 01101111$

)1

11 00100000 01110100 01101111 00

110 01111001 00100000

11101110 01100100 01110101 01100011

100101 01100100 00100000 01100101 01101

_____0110101000 01100101 01110010 01100

01100101 01110010 01100001 01110100 0110

01110110 01100101 01110010 01101000 et ioni

01101101 00100000 01110100 01101111 001 110010 01110011 00100000 01110111 01101a 11111 01101110 01100100 01110101 01100011 dia

11 01101110 00100000 01110100 01101000

01100101 01100100 00100000 01100101 0110 000 01110100 01101111 00100000 0110

01110111 01101000 01100101 01110010 0110 01101 01100001 01101110 01111001 00100000

100 00100000 01101111 01100110 011001 10

Linaro

11100110 01110010 01101111 0

00100000 01110100 01101111 00100000

Embedded hypervisor cybersecurity

Hypervisor robustness

- UN-R155/156 requirements translation yet to be done
- Cybersecurity domains are still to be formalized/accepted:
 - core, VMM and overall orchestration, devices, updates (firmware, hypervisor, images, applications/models)

Operations

- Paravirtualized Trusted Substrate
- TEE access from VMs
 - Expected to be fully available this October (we are today at 50% of work)
- SoC independent hardware anchored attestations (TrustZone or discrete chip)
- Device assignment challenges
 - Shared devices initialization and control challenges / virtio-SCMI
 - Network specific: pause frames handling, TSN authorization
- Heterogeneous computing (Cortex R providing network access to Cortex A)
- Confidential Computing

Confidential compute - the problem

Confidential compute - in the cloud

Confidential Compute - automotive

OEM (feature subscription...) Insurance company Rental, fleet Digital Content provider Car owner (P2P rentals)

Confidential workioaus AND connuential sidecars

High level use case being studied at Global Semiconductor Alliance TIES/Automotive

Confidential AI with OpenEnclave SDK (OESDK)

- Available on Intel (SGX) and Arm (currently TrustZone later Arm v9 Realms)
- Linux and Windows support on the normal world side
- Builds on Global Platform APIs for TrustZone but greatly extends its capabilities

Operating system & container

01 0110101 01100100 00100000 01100100 01100000 0100100 001000000 011010010 0110000 0100100 00100000 01100000 01100000 00100000 01100100 00100000 01100000 001000000 01110100 00100000 01100000 001000000 01110010 011000000 011000000 001000000 01110010 0110000000 011000000 001000000 01110000 0110010 0110000000

ULIUIII0 0111001

- 01110110 01100101 01110010 01101000 01100 01100100 00100000 01101111 01101101 00100000 01110100 01101111 0010
- 101110010 01110011 00100000 01110111 01101000 011111 01101110 01100100 01110101 01100011 011 111 01101110 00100000 01110100 01101000
- 00 01100101 01100100 00100000 01100101 011 100000 01110100 01101111 00100000 011001 100110 01110010 01101111 0
- 01110111 01101000 01100101 01110010 01100 101101 01100001 01101110 01111001 0010000

meta-"ledge"-security (Arm Cassini program)

Direct secure booting from UEFI now possible (no grub)

Kernel constant verification from TEE PoC

Full disk encryption with TPM unsealing (firmwareTPM in some cases)

Base SELinux configuration

IMA with multiple signers almost finished (Red Hat effort)

Parsec

Container attestations based on hardware root of trust

- Pushing PSA APIs through FF-A to allow SoC independent hardware anchored attestations (TrustZone or discrete chip)
- Need to be integrated with container frameworks that actually do attestation

Call to actions

Assess whether you want to have Arm Cassini standard (SystemReady-IR, PSA, Parsec) in your RFPs

Revisit all embedded best practices as many things are rapidly changing

francois.ozog@linaro.org

Thank you

00101 01110101 01110010

110 01111001

VI.

00000000 1200

en 100101

ALUNY

ALLOOLLOOLLO

110111 01101000 011001

110011 00100000 01110100 01101111

ANY QUESTIONS ABOUT THE AUTO-ISAC OR FUTURE TOPICS FOR DISCUSSION?

TLP:WHITE

49

How to Get Involved: Membership

IF YOU ARE AN OEM, SUPPLIER OR COMMERCIAL VEHICLE, **CARRIER OR FLEET, PLEASE JOIN THE AUTO-ISAC!**

- > REAL-TIME INTELLIGENCE SHARING
- > INTELLIGENCE SUMMARIES
- > REGULAR INTELLIGENCE **MEETINGS**
- > CRISIS NOTIFICATIONS

- > DEVELOPMENT OF BEST PRACTICE GUIDES
- > EXCHANGES AND WORKSHOPS
- > TABLE TOP EXERCISES
- > WEBINARS AND PRESENTATIONS
- > MEMBER CONTACT DIRECTORY > ANNUAL AUTO-ISAC SUMMIT EVENT

To learn more about Auto-ISAC Membership, please contact andreaschunn@automotiveisac.com. For Partnership, please contact sharmilakhadka@automotiveisac.com.

50

AUTO-ISAC PARTNERSHIP PROGRAMS

Strategic Partnership

- For-profit companies such as "Solutions Providers" that sell connected vehicle cybersecurity products & services.
- Examples: Hacker ONE, Upstream, IOActive, Karamba, Grimm
- 1. Must be approved by Executive Director and the Membership & Benefit Standing Committee (MBSC).
- 2. Formal agreements: NDA, SPA, SoW, CoC required.
- 3. In-kind contributions allowed. Currently no fee.
- 4. Does not overtly sell or promote product or service.
- 5. Commits to support the Auto-ISAC's mission.
- 6. Engages with the automotive ecosystem, supporting & educating Auto-ISAC Members and its Community.
- 7. Develops value added Partnership Projects to engage with the Auto-ISAC, its Member, and Community.
- 8. Summit Sponsorship allowed for promotion. Summit Booth priority.
- 9. Engagement must provide Member awareness, education, training, and information sharing
- **10. Builds relationships, shares, and participates** in information sharing Auto-ISAC activities.
- 11. Supports our mission through educational webinars and sharing of information.

Community Partnership

- Community Partners are companies, individuals, or organizations with a complementary mission to the Auto-ISAC, with the interest in engaging with the automotive ecosystem, supporting, and educating Members and the community.
- Includes Industry Associations, Government Partners, Academia, Research Institution, Standards Organizations, Non- Profit, Technical Experts, Auto-ISAC Sponsors.
- Examples: Autos Innovate, ATA, ACEA, JAMA, MEMA, CLEPA, CISA, DHS, FBI, NHTSA, NCI, UDM etc.
- 1. No formal agreement required.
- 2. No approval required.
- 3. Added to Auto-ISAC Community Distro List to stay engaged in Community events and activities.
- 4. Participate in Auto-ISAC Monthly Community Calls.
- 5. Learn **what is trending** in the ISACs and hear from key leaders during the **special topic of interest** presentation.
- 6. Added to Auto-ISAC DRIVEN list to receive our daily cyber automotive newsletter.
- 7. Part of the Network with Automotive Community and the extended automotive ecosystem.
- 8. Invitation to **attend and support** our yearly Summit.

CURRENT PARTNERSHIPS

MANY ORGANIZATIONS ENGAGING

COMMUNITY PARTNERS

INNOVATOR Strategic Partnership (13)

Cybellum Deloitte FEV GRIMM HackerOne Karamba Security KELA Pen Testing Partners Red Balloon Security Regulus Cyber Saferide Security Scorecard Upstream

AUTO-ISAC Automotive Information Sharing and Analysis Center

NAVIGATOR Support Partnership AAA ACEA ACM American Trucking Associations (ATA) ASC ATIS Auto Alliance EMA **Global Automakers** IARA IIC JAMA MEMA NADA NAFA **NMFTA RVIA** SAE TIA **Transport Canada**

COLLABORATOR

Coordination Partnership

AUTOSAR **Billington Cybersecurity** Cal-CSIC Computest Cyber Truck Challenge DHS CSVI DHS HQ DOT-PIF FASTR FBI GAO ISAO Macomb Business/MADCAT Merit (training, np) MITRE National White Collar Crime Center NCFTA NDIA NHTSA NIST Northern California Regional Intelligence Center (NCRIC) **NTIA - DoCommerce** OASIS ODNI **Ohio Turnpike & Infrastructure Commission** SANS The University of Warwick TSA University of Tulsa USSC VOLPE W3C/MIT Walsch College

TLP:WHITE

BENEFACTOR Sponsorship Partnership 2021 Summit Sponsors-Celerium Cyware Denso NDIAS **IOActive** Clarotv Deloitte Finite State Tanium **Recorded Future** PaloAlto Networks Upstream Securonix Zimperium Micron Block Harbor SecurityScorecard Booz Allen CybelAngel ATT Ford Cybellum 2020 Summit Sponsors-Claroty Upstream Escrypt Blackberry Cvbellum Blockharbor C2A Synopsis Intsignts ValiMail

AUTO-ISAC BENEFITS

- Focused Intelligence Information/Briefings
 Cybersecurity intelligence sharing
 Vulnerability resolution
- Member to Member Sharing
- Distribute Information Gathering Costs across the Sector
- >Non-attribution and Anonymity of Submissions
- >Information source for the entire organization
- ➢Risk mitigation for automotive industry
- Comparative advantage in risk mitigation
- Security and Resiliency

Building Resiliency Across the Auto Industry

TLP:WHITE

THANK YOU!

OUR CONTACT INFO

www.automotiveisac.com @auto-ISAC

TLP:WHITE